Automatic surface inspection for directional textures using nonnegative matrix factorization

نویسندگان

  • Der-Baau Perng
  • Ssu-Han Chen
چکیده

A global image restoration scheme using nonnegative matrix factorization (NMF) is proposed in this paper. This NMF-based image restoration scheme can be used for inspecting the defects in directional texture surfaces automatically. Decomposing the gray level of image pixels into an ensemble of row vectors, we first reduce the data set from original data space into a lowerdimensional NMF space. The repetitive and periodical primitives are well reconstructed by two lower-dimensional basis and weight matrices with nonnegative elements, named nonnegative matrix approximation (NMA). Then the local defects will be revealed by applying image subtraction between the original image and the NMA. As a consequence, the directional textures are eliminated, and only local defects are preserved if they initially are embedded in the surface. A supervised heuristic, elbow of residual curve rule, is devised which helps users to determine a proper basis space size of a specific image. Experiments on a variety of directional texture surfaces are given to demonstrate the effectiveness and robustness of the proposed method. Keyword Directional texture . Nonnegative matrix factorization . Defect inspection .Machine vision

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

A new approach for building recommender system using non negative matrix factorization method

Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is ​​decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...

متن کامل

Automatic surface inspection using wavelet reconstruction

In automatic surface inspection, one has to solve the problem of detecting small surface defects which locally break the homogeneity of a texture pattern. Textures are generally classified into two major types, structural and statistical [1]. Structural textures are those that are composed of repetitions of some basic texture primitive, such as directional lines, with a deterministic rule of di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010